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Summary. Kernel methods are a class of powerful machine learning algorithms
which are able to solve non-linear tasks. This chapter presents a concise overview
of a selection of relevant machine learning methods and a survey of applications to
show how kernel methods have been applied in finance. The overview of learning
concepts addresses methods for dimensionality reduction, regression, and classifica-
tion. The concept of kernelisation which can be used in order to transform classical
linear machine learning methods into non-linear kernel methods is emphasised. The
survey of applications of kernel methods in finance covers the areas of credit risk
management, market risk management, and discusses possible future application
fields. It concludes with a brief overview of relevant software toolboxes.

Keywords: Support Vector Machines, Dimensionality Reduction, Time Series Anal-
ysis, Credit Risk, Market Risk

1 Introduction

Kernel methods (Cristianini and Shawe-Taylor, 2000; Herbrich, 2002; Schölkopf
and Smola, 2002; Shawe-Taylor and Cristianini, 2004) can be regarded as ma-
chine learning techniques which are “kernelised” versions of other fundamental
machine learning methods. The latter include traditional methods for linear
dimensionality reduction such as principal component analysis (PCA) (Jol-
liffe, 1986), methods for linear regression and methods for linear classification
such as linear support vector machines (Cristianini and Shawe-Taylor, 2000;
Boser et al., 1992; Vapnik, 2006b). For all these methods corresponding “kernel
versions” have been developed which can turn them into non-linear methods.
Kernel methods are very powerful, precise tools that open the door to a large
variety of complex non-linear tasks which previously were beyond the horizon
of feasibility, or could not appropriately be analysed with traditional machine
learning techniques. However, with kernelisation come a number of new tasks
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and challenges that need to be addressed and considered. For example, for
each application of a kernel method a suitable kernel and associated kernel
parameters have to be selected. Also, high-dimensional non-linear data can be
extremely complex and can feature counter-intuitive pitfalls (Verleysen and
Francois, 2005).

Some kernel methods, for example non-linear Support Vector Machines
(SVMs) (Vapnik, 2000, 1998; Cristianini and Shawe-Taylor, 2000; Schölkopf
and Smola, 2002; Burges, 1998; Evgeniou et al., 2000), have become very pop-
ular and useful tools in applications. They have, in recent years, substantially
improved former benchmarks in application areas like bioinformatics, com-
putational linguistics, and computer vision (Cristianini and Shawe-Taylor,
2000). Specific applications include genome sequence classification (Sonnen-
burg et al., 2005), other applications in computational biology (Schölkopf
et al., 2004), time series prediction (Cao, 2003), text categorization (Fu et al.,
2004), handwritten digit recognition (Vapnik, 2000), pedestrian detection
(Kang et al., 2002; Chen et al., 2006), face recognition (Osuna et al., 1997; Li
et al., 2004b; Carminati and Benois-Pineau, 2005), and other applications in
bioengineering, signal- and image processing (Camps-Valls et al., 2007).

In machine learning applications the characteristics of the available data
plays a crucial role. Of course this applies to applications in finance as well,
including risk management, asset allocation issues, time series prediction, and
financial instrument pricing. In risk management one may try to estimate the
future price uncertainty of a financial instrument exposure using large histor-
ical data sets. The reliability of such an analysis is highly dependent on the
adequacy of the chosen risk management model and the quality of the input
data. However, financial data are generally known to be inherently noisy, non-
stationary and deterministically chaotic (Cao and Tay, 2001). The potential
of kernel machines to deal with such complex and possibly non-linear input
data is therefore of particular value. Additionally, financial data sets exhibit
highly heterogenous behavior. While market risk4 data usually have exten-
sive time series—especially when considering tick-wise data—credit risk5 data
show sparsity due to relatively rare credit events and short lengths of times
series. Many well-approved techniques have been developed in the past to
handle the deficiencies that these data sets exhibit. While some authors have
employed artificial intelligence techniques to solve these problems, it can be
stated that traditional statistical methods, like GARCH (generalized autore-
gressive conditional heteroskedasticity) or PCA are more common. Alexander
(2001) gives an introductory overview to the more traditional techniques.

Some developments in kernel machines are very recent and have not yet
had a chance to be applied in the area of finance. Our aim is to provide a

4 Market risk arises due to adverse changes in the market prices of financial instru-
ments, e.g. stocks, bonds or currencies.

5 Credit risk describes potential losses for the creditor through a debtor who is not
able or willing to repay his debt in full.
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concise overview of fundamental concepts of kernel methods that are already
common in finance applications, as well as aspects of some newer develop-
ments which may be of importance for financial applications in the future.
There are several excellent texts on introductory or more theoretical aspects
of kernel methods available which are recommended to complement and ex-
tend the present chapter. Among them are the introductory tutorial on SVMs
and statistical learning theory by (Burges, 1998), the books (Vapnik, 1998,
2000, 2006b; Cristianini and Shawe-Taylor, 2000; Shawe-Taylor and Cristian-
ini, 2004; Schölkopf and Smola, 2002; Herbrich, 2002; Suykens et al., 2002), as
well as relevant book chapters in (Haykin, 1999; Gentle et al., 2004; Bishop,
2006), and a number of recent collections and overviews on associated topics
such as (Müller et al., 2001; Burges, 2005; Chapelle et al., 2006).

The first part of this chapter provides some theoretical background and
explains in Section 2 the general idea of kernel machines and kernelisation. The
three fundamental machine learning paradigms of dimensionality reduction,
regression, and classification, and some associated kernel methods are covered
in Sections 3, 4, and 5, respectively. Section 6 addresses questions of kernel and
parameter selection. The second part of the present chapter starts in Section 7
with a survey of typical questions and tasks arising in finance applications
and how kernel methods have been applied to solve them. A brief overview of
relevant software toolboxes follows in Section 8.

2 Kernelisation

Kernel methods employ a non-linear feature mapping

φ : X −→ H (1)

from an input space X , for example X = Rd, to a high-dimensional possibly
∞–dimensional feature space H. φ lifts a potentially non-linear task from
X to H where “remotely” a satisfactory solution is sought via traditional
typically linear tools (cf. Fig. 1). The idea is that the feature mapping φ only
appears implicitly and does not need to be determined explicitly in any of
the computations. Central to this approach is a continuous and symmetric
function

K : X × X −→ R (2)

which will be used to measure the similarity between inputs. Mercer’s condi-
tion (Mercer, 1909; Courant and Hilbert, 1953; Cristianini and Shawe-Taylor,
2000; Herbrich, 2002) says if K is positive semi-definite then there exists a
mapping φ as in (1) from X into some Hilbert space H (that is, a complete
dot product space) such that K is a (Mercer) kernel, that is, it can be written
as dot product as follows

K(xi, xj) = φ(xi)T φ(xj) for i, j ∈ {1, ..., k}. (3)
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Fig. 1. The feature map of non-linear SVMs: A non-linear separator (thick line on
the left) in input space is obtained by applying a linear maximal margin classifier
in high-dimensional feature space (on the right).

Note that given a vector space X = Rd the function K is positive semi-
definite if

∑k
i,j=1 cicjK(xi, xj) ≥ 0 for all k ∈ N, any selection of examples

x1, ..., xk ∈ X , and any coefficients c1, ..., ck ∈ R. Kernelisation of any algo-
rithm, for example for dimensionality reduction, regression, or classification,
can be achieved by seeking a formulation of the algorithm where variables
only occur in form of dot products xT

i xj . Then, after formally replacing all
the xi ∈ X by φ(xi) the feature vectors only occur in the form of dot products
φ(xi)T φ(xj) and finally, provided the selected kernel function K fulfills Mer-
cer’s condition, the substitution of equation (3) can be applied, which leads
to a kernel method.

The computations of kernel methods thus only involve kernel values and do
not require explicit knowledge of φ. This is often called the Kernel Trick. The
basic idea of kernel methods was already developed in the 1960s (Aizerman
et al., 1964) and incorporated into the SVM framework from 1992 (Boser et al.,
1992; Vapnik, 2000, 2006a). The kernel trick was also employed to kernelise
other methods such as PCA (Schölkopf et al., 1996, 1997; Schölkopf, 1997).

3 Dimensionality Reduction

There are numerous motivations to perform dimensionality reduction includ-
ing reduction of computational complexity, a better understanding of the data,
and the avoidance of unwanted effects which can occur in high-dimensional
spaces. In finance, particularly in risk management, dimensionality reduction
plays a crucial role to enable the modeling of systems which often have several
hundreds of risk factors. Hitherto, usually linear methods, such as PCA, were
used in finance applications, like interest rate modeling (Alexander, 2001).
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To describe the fundamental paradigm let xt ∈ Rd, t = 1, ..., n be data
points in the high dimensional space. The aim is to find a mapping

Rd −→ Rr (4)
xt 7→ yt

for all t = 1, ..., n such that r < d and the new lower dimensional represen-
tation of the data in Rr has some equivalent topological structure and still
contains all its essential information.

3.1 Classical Methods for Dimensionality Reduction

This section briefly describes principal component analysis (PCA) and mul-
tidimensional scaling (MDS). These two classical spectral methods for linear
dimensionality reduction are the basis of kernel principal component analy-
sis (KPCA) and isomap. The latter two methods can be regarded as kernel
methods for non-linear dimensionality reduction (Williams, 2001; Ham et al.,
2004) and will be addressed in section 3.2 below. PCA and MDS are in gen-
eral not appropriate for processing data samples from non-linear manifolds.
This is illustrated in Fig. 2 where the task is to reduce the embedding of the
two-dimensional helical strip shown on the left from an embedding into R3 to
an embedding into R2. As shown on the right hand side of Fig. 2 PCA and
classical metric MDS, which both produce the same output (Cox and Cox,
2001; Xiao et al., 2006), both fail to unfold the helix correctly and instead
project it onto the two-dimensional plane. The non-linear method isomap
(Tenenbaum et al., 2000), however, is able to unfold the helix and thus leads
to a topologically correct embedding of the helix into R2.

Principal Component Analysis

Principal component analysis (PCA) is a well-established method for linear
dimensionality reduction (Hotelling, 1933; Jolliffe, 1986). Given a set of sample
vectors xt ∈ Rd, t = 1, ..., n the first step of PCA is to calculate the sample
mean x̄ = 1

n

∑n
t=1 xt and the sample covariance matrix

C =
1
n

n∑
t=1

(xt − x̄)(xt − x̄)T . (5)

As C is a symmetric (d × d)-matrix it is possible to compute its eigenvalues
λi ∈ R and associated eigenvectors vi ∈ Rd, i = 1, ..., d, such that

V T CV = diag[λ1, ..., λd] (6)

where the λ1 ≥ λ2 ≥ ... ≥ λd are the eigenvalues of C in descending order,
diag[λ1, ..., λd] is the diagonal matrix with the eigenvalues as diagonal ele-
ments, and V is the matrix with the associated eigenvectors vi, the principal
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components, as columns. The obtained eigenvectors are mutually orthonormal
and define a new basis aligned with the directions of maximum variance in
the data. The eigenvalues represent the projected variance of the inputs along
the new axes.

The number of significant eigenvalues, r, indicates the intrinsic dimension-
ality of the data set. A projection of the data into the r-dimensional subspace
is given by yt = V T

r (xt − x̄), t = 1, ..., n where Vr is the (d× r) submatrix of
V containing the first r eigenvectors associated with the r largest eigenvalues
as columns.

One possible geometric interpretation is that PCA seeks the orthogonal
projection of the data onto a lower dimensional linear space such that the
variance of the projected data becomes maximal (Jolliffe, 1986; Bishop, 2006).

Multidimensional Scaling

Classical Multidimensional Scaling (MDS) (Cox and Cox, 2001) can be moti-
vated as a method which has the aim to find a faithful lower dimensional em-
bedding of the given data xt ∈ Rd, t = 1, ..., n under the constraint that pair-
wise Euclidean distances between data points are preserved as much as possi-
ble, that is, ‖xi−xj‖ ≈ ‖yi−yj‖, i, j = 1, ..., n. Under the assumption that the
centroid of the data is at the origin, that is

∑n
t=1 xt = 0, the following relation

between the matrix of squared Euclidean distances D = (‖xi − xj‖2)i,j=1,...,n

and the Gram matrix G = (xT
i xj)i,j=1,...,n holds (Cox and Cox, 2001):

G = −1
2
HDH (7)

where H = (Hij)i,j=1,...,n is the centering matrix with

Hij = δij − 1
n

and δij =

{
1, i = j

0, i 6= j.
(8)

Let X = [x1, ..., xn] ∈ Rd×n be the matrix with the data points as columns.
Since G = XT X is symmetric there is an orthonormal basis of eigenvectors
w1, ..., wn such that

G = W · diag[µ1, ..., µn] ·WT (9)

where the µ1 ≥ µ2 ≥ ... ≥ µn are the eigenvalues of G in descending order
and W is the matrix with the associated eigenvectors wi as columns. After
selecting the r most significant eigenvalues a low dimensional representation
of the data is obtained by

xi 7→ yi = (
√

µ1w1i, ...,
√

µrwri)T , i = 1, ..., n. (10)

An alternative motivation used in MDS is to preserve the dot products as far
as possible, that is xix

T
j ≈ yiy

T
j , i, j = 1, ..., n, and start with an eigenvalue
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decomposition of the Gram matrix as in (9). This approach directly works on
the input data and not on the pairwise distances.

Metric MDS can be categorised as a kernel method because it can be
interpreted as a form of kernel MDS or kernel PCA, respectively (Williams,
2001).

Original helix

PCA or metric MDS

5-isomap

Fig. 2. Left: A two-dimensional helical strip is embedded in three-dimensional Eu-
clidean space. Right top: Linear methods such as PCA or metric MDS project the
data into R2. Right bottom: The non-linear method isomap with neighbourhood pa-
rameter 5 is able to unfold the helix and can approximately maintain topologically
correct neighbourhood relationships between the data points.

3.2 Non-linear Dimensionality Reduction

Non-linear dimensionality reduction is often used synonymously with the term
manifold learning. Manifolds are central objects in geometry and topology
(Spivac, 1979). Examples of manifolds are locally Euclidean objects such as
lines, circles, spheres, tori, subsets of those objects, and their generalisations
to higher dimensions. The aim of manifold learning methods is to extract low-
dimensional manifolds from high-dimensional data and faithfully embed them
into a lower dimensional space.

The use of non-linear dimensionality reduction techniques in practical ap-
plications can come with technical and conceptual challenges. When using
linear dimensionality reduction techniques the outcome has always been re-
stricted because there exists essentially only one linear space in each dimen-
sion, while in the non-linear case there is a large variety of manifolds.

In recent years several new methods for non-linear dimensionality reduc-
tion have been developed and many of them are, similar to PCA and MDS,
spectral methods (Xiao et al., 2006). These include, for example, Kernel Prin-
cipal component Analysis (KPCA) (Schölkopf et al., 1998), Isometric Fea-
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ture Mapping (Isomap) (Tenenbaum et al., 2000), Locally Linear Embed-
ding (LLE) (Roweis and Saul, 2000), Maximum Variance Unfolding (MVU)
(Weinberger and Saul, 2004; Weinberger et al., 2004, 2005), and Laplacian
Eigenmaps (Belkin and Niyogi, 2003). The different methods have distinct
individual advantages and it is a topic of current research to gain better
understanding of their robustness and ability to recognise and preserve the
underlying manifolds’ topology and geometry.

Kernel Principal Component Analysis

The basic idea of kernel principal component analysis (KPCA) is to kernelise
PCA, that is, to map the data x1, ..., xn to a higher dimensional space using
an implicit non-linear feature map φ : Rd −→ H and then to apply PCA
(Schölkopf et al., 1997, 1998).

In practice, however, it is not easy to center the mapped data in feature
space for calculation of the estimated covariance matrix

C =
1
n

n∑

i=1

(
φ(xi)− 1

n

n∑
t=1

φ(xt)

)(
φ(xi)− 1

n

n∑
t=1

φ(xt)

)T

.

which is required for PCA.
According to (Schölkopf et al., 1997, 1998; Williams, 2001; Saul et al.,

2006) there is an alternative solution to KPCA which utilises the Gram matrix
in feature space

K = (φ(xi)T φ(xj))i,j=1,...,n.

After suitable kernel substitution with a positive semi-definite kernel, K is
called the kernel matrix. A centered kernel matrix KC can be calculated by

KC = HKH (11)

where H = (Hij)i,j=1,...,n is the centering matrix of MDS as in (8).
The remainder of the method follows the approach explained for MDS in

(9): Since KC is symmetric it can be diagonalised KC = W · diag[µ1, ..., µn] ·
WT such that the eigenvalues µi are in descending order on the diagonal and
W is the matrix with the associated eigenvectors wi as columns. Selection of
the r most significant eigenvalues leads to a low-dimensional representation
of the data as in (10).

Isometric Feature Mapping

Isometric Feature Mapping (Isomap) (Tenenbaum et al., 2000) is a manifold
learning method which can be seen as an extension of MDS where approximate
geodesic distances are used as inputs instead of pairwise Euclidean distances.
In contrast to Euclidean distances which are measured straight through the
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surrounding space Rd geodesic distances can be longer because they are mea-
sured along (shortest) arcs within the manifold using its intrinsic metric.

As in (3) let x1, ..., xn ∈ Rd, be given data points which are assumed to
be sampled from a low-dimensional manifold M which is embedded in the
high-dimensional input space Rd. A basic version of Isomap using k-nearest
neighbour graphs can then be explained in three steps (Tenenbaum et al.,
2000):

1. Select a neighbourhood parameter k ∈ N and construct a neighbourhood
graph G such that each point of the manifold is connected only to its k
nearest neighbours. Weight existing connections between two neighbour-
ing vertices xp, xq ∈ G by their Euclidean distance in Rd.

2. Generate a distance matrix D = (dij)i,j=1,...,n where each coefficient dij

is the shortest path distance in G between each pair of the initially given
sample points xi, xj ∈ Rd, i, j = 1, ..., n. The shortest paths in G can be
calculated, for example, by Dijkstra’s algorithm (Cormen et al., 2001).
The idea is that the path-length dij is an approximation of the geodesic
distance between each pair of points xi, xj ∈M, i, j = 1, ..., n.

3. Apply metric MDS using the dij , i, j = 1, ..., n as inputs.

Ham et al. (2004) showed that Isomap can be regarded as a form of KPCA,
that is a kernel method, if the following conditionally positive definite kernel
matrix is used

Kisomap = −1
2
HDH, (12)

where D is Isomap’s distance matrix of step 2 above and H is the centering
matrix of MDS which was defined in equation (8).

Example: Rotating Coin

The rotating coin data set consists of a series of 200 digital images taken of a
gold coin while it was rotating. Each image had 1682 pixel which means that
it can be regarded as a point in a 28224-dimensional vector space. The essen-
tial underlying dynamics contained in the image sequence can be represented
by a circle, that is, a 1-dimensional manifold embedded in the 2-dimensional
plane. The task for the dimensionality reduction method was to recognise the
underlying dynamics, extract the circle and reduce the dimensionality from
1682 down to 2 dimensions. Fig. 3 shows the results obtained with Isomap
(Tenenbaum et al., 2000) using k = 3 as the neighbourhood parameter. Sim-
ilar results but with stronger geometric distortions and irregularities were
obtained with KPCA and with Isomap when using k > 3. The traditional
linear methods PCA and MDS were not able to solve this task.

4 Regression

The task of linear regression is to estimate a function
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Fig. 3. Application of isomap (k =3) to the rotating coin data. Each point represents
an image. Similar images are mapped to points in close vicinity. The rotation encoded
in the sequence of high-dimensional pixel arrays is represented by the resulting one-
dimensional circle graph.

f(x) = wT x + b (13)

by finding suitable parameters w ∈ Rm and b ∈ R such that f(xi) = yi, i =
1, ..., n for a given set of iid data points

(x1, y1) , ..., (xn, yn) ∈ Rm ×R. (14)

In Finance, (mostly linear) regression represents a standard tool to perform
time series analysis, especially for forecasting tasks (Alexander, 2001). A se-
lection of applications of support vector machine regression in finance will be
reviewed in section 7.2.

Geometrically linear regression corresponds to finding an offset and a di-
rection of the line that best fits a set of given data points. A classical solution
method for the task of line fitting is least squares optimisation which min-
imises the square loss

∑m
i=1(yi − (wxi + b))2 over all (w, b) ∈ Rm ×R.

Support Vector Machines (SVMs) for linear regression are a more recent
method which can be used to solve this task by minimising the empirical risk

1
n

n∑

i=1

‖yi − f(xi)‖ε (15)
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where ‖z‖ε =

{
0 , if ‖z‖ ≤ ε

‖z‖ − ε , otherwise,
(16)

is Vapnik’s ε-insensitive loss function (Vapnik, 1998).
This can be formulated as a constraint optimisation task as follows:

Minimise
1
2
wT w + C

n∑

i=1

(ξi + ξ∗i ) (17)

over all w, b ∈ R and ξi, ξ
∗
i ≥ 0, i = 1, ..., n.

subject to yi − (wT xi + b) ≤ ε + ξi, i = 1, ..., n

(wT xi + b)− yi ≤ ε + ξ∗i , i = 1, ..., n.

The parameters ε > 0 and C ≥ 0 are to be selected separately by the user.
C ≥ 0 regulates the tolerance level provided by the slack variables ξi, ξ

∗
i ∈

R≥0. If all data points lie within the ε-tube of equation (16) no slack variables
are required.

Through application of the method of Lagrange multipliers the dual for-
mulation of (17) can be obtained

Maximise −1
2

n∑

i,j=1

(αi − α∗i )(αj − α∗j )x
T
i xj (18)

−ε

n∑

i=1

(αi + α∗i ) +
n∑

i=1

yi(αi − α∗i )

over all Lagrange multipliers αi, α
∗
i ∈ [0, C]

subject to
n∑

i=1

(αi − α∗i ) = 0.

The SVM in dual space is

f(x) =
n∑

i=1

(αi − α∗i )x
T
i · x + b (19)

where αi, α
∗
i are obtained by solving (18) and b follows from the associated

Karush-Kuhn-Tucker (KKT) conditions of optimality.
Through kernelisation the above procedure can be extended for non-linear

function estimation. After substitution of x by φ(x) the function to be esti-
mated in (13) becomes

f(x) = wT φ(x) + b. (20)

The primal optimisation task is the same as described in (17) except that
the xi are formally replaced by φ(xi). Application of Lagrangian optimisation
leads to the dual formulation:
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Maximise −1
2

n∑

i,j=1

(αi − α∗i )(αj − α∗j )K(xi, xj) (21)

−ε

n∑

i=1

(αi + α∗i ) +
n∑

i=1

yi(αi − α∗i )

over all Lagrange multipliers αi, α
∗
i

subject to
n∑

i=1

(αi − α∗i ) = 0

0 ≤ αi ≤ C, i = 1, ..., n

0 ≤ α∗i ≤ C, i = 1, ..., n.

Finally the SVM in dual space is

f(x) =
n∑

i=1

(αi − α∗i )K(xi, x) + b (22)

where αi, α
∗
i are obtained by solving (21) and b follows from the associated

conditions of optimality. This is the same as (18) and (19) except that the
dot products xT

i xj in (18) and (19) are formally replaced by the associated
kernel values K(xi, xj). The two free parameters ε and C in (21) control the
VC-dimension (Vapnik, 2000) of f(x) and have to be selected separately, for
example, through cross-validation. It turns out that the set of data points
xi for which (αi − α∗i ) 6= 0 is sparse. Its elements are called the support
vectors of the machine (22). More details about this method are available in
(Vapnik, 1998, 2000, 2006b; Cristianini and Shawe-Taylor, 2000; Mika et al.,
2005; Shawe-Taylor and Cristianini, 2004; Suykens et al., 2002; Schölkopf and
Smola, 2002).

5 Classification

Classification can be seen as a special case of the regression task (13)-(14)
where the function values are integers, for example, {−1, 1} in the case of
binary classification. Classification tasks are the second dominant application
within the finance area (cf. Sec. 7.1). Kernel-based classification has been thor-
oughly used in credit risk management, for instance to differentiate between
good and bad clients.

The perceptron (Rosenblatt, 1958; Mitchell, 1997) is one of the most basic
methods for binary classification. It is often interpreted as an abstract neuron
model

r = ϕ(w · x + b) (23)

where r is the associated return, b ∈ R is the bias, w ·x =
∑

j wjxj is the dot
product between a weight vector w ∈ Rd and an input vector x ∈ Rd, and
ϕ : R −→ {−1, 1} is an activation function, for example, the signum function
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ϕ : R −→ {0, 1}, y 7→ ϕ(y) =

{
−1 , if 0 < y,

+1 , if y ≤ 0.

Geometrically the perceptron defines a hyperplane as the set of points which
is perpendicular to the weight vector w and has distance a = − b

‖w‖ from the
origin:

{x; w · x = −b} = {x;
w

‖w‖ · x− a = 0} (24)

By dividing the input space into two halves a hyperplane can be employed
for linear binary classification of input patterns. The perceptron training rule
(Mitchell, 1997) is an iterative algorithm which adjusts the weight vector and
bias to place the associated hyperplane in some sensible position between two
classes of given training points.

In contrast basic support vector machines (Cristianini and Shawe-Taylor,
2000) treat linear classification as convex optimisation task which in primal
weight space represents a standard constraint optimisation problem: The mar-
gin of separation between the two point classes should be maximised under
the constraint that the pattern should be classified correctly, that is in the
case of separable patterns

yi(w · xi + b) ≥ 1, i = 1, ..., n (25)

and in the case of non-separable patterns

yi(w · xi + b) ≥ 1− ξi (26)

with slack variables ξi > 0 which can take exceptions and outliers into ac-
count (Cortes and Vapnik, 1995).

After substituting the xi by φ(xi) the constraints for the non-linear case
become

yi(w · φ(xi) + b) ≥ 1− ξi. (27)

As for regression this constraint optimisation task can be formulated in primal
and dual form using the method of Lagrangian optimisation. In the dual form
feature vectors will only occur as parts of dot products φ(xi)T φ(xj). Using
a positive definite kernel function the latter can be replaced by kernel values
according to equation (3) and a non-linear SVM is obtained by kernelising the
concept of the linear maximum margin classifier.

It can be shown (Mangasarian, 1999; Pedroso and Murata, 2001; Ikeda
and Murata, 2005) that if the distances between the feature vectors and the
separating hyperplane are evaluated using a Lp–norm, that is,

‖w‖p :=
{

(
∑n

i=1 |wi|p)
1
p , 1 ≤ p < ∞

max1≤i≤n |wi| , p = ∞
the problem of margin optimisation becomes a p-th order programming prob-
lem, for example
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p = 2: quadratic programming is used by classical SVMs.
p = 1: linear programming is used by least squares support vector machines
(LSSVMs) (Suykens and Vandewalle, 1999a,b; Suykens et al., 2002).

Support vector machines (SVM) (Vapnik, 2000; Cristianini and Shawe-
Taylor, 2000; Suykens et al., 2002; Schölkopf and Smola, 2002) are among the
most commonly used kernel machines. They can be regarded as a newer and, in
practical applications, often better alternative to artificial neural networks for
function approximation to solve classification or regression tasks. In contrast
to traditional artificial neural networks no lengthy iterative training procedure
is required. In most cases SVM “training” is faster and does not get stuck
in local minima because it is achieved by a direct calculation for linearly
constraint optimisation.

We have described the basic form of SVMs for regression and for binary
classification. Other important variations and extensions of SVMs are ν-SVMs
(Schölkopf and Smola, 2002), LS-SVMs (Suykens et al., 2002), SVMs for clus-
tering (Tax and Duin, 1999; Ben-Hur et al., 2001; Yang et al., 2002b), and
SVMs for multi-class classification (Rifkin and Klautau, 2004).

The SVM algorithms used before 1999 were typically slower than artifi-
cial neural networks with similar generalisation performance (Haykin, 1999,
p.345). Significant speed improvements were achieved, for example, through
the SMO algorithm by (Platt, 1999). Since then a variety of techniques have
been investigated and evaluated to support application of SVMs to large data
sets (Huang et al., 2006), data sets with small training samples (Hertz et al.,
2006), and unbalanced data sets (Raskutti and Kowalczyk, 2004). The latter
topics are still object of current research.

6 Kernels and Parameter Selection

The selection of suitable kernels and associated kernel parameters is an im-
portant task when using kernel methods for regression, classification, and
dimensionality reduction. There are several possibilities to choose the kernel
function K : X × X −→ R (Cristianini and Shawe-Taylor, 2000).

If input space and feature space are identified, that is φ(x) = x, this results
in the linear kernel, which is the dot product of the two input vectors

K(x, y) = x · y.

Examples of other common kernels are the polynomial kernel

K(x, y) = (1 + x · y)p

and the Gaussian or radial basis function (RBF) kernel

K(x, y) = e
−d(x,y)2

σ2 .
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The p-Gaussian kernel (Francois et al., 2005)

K(x, y) = e
−d(x,y)p

σp

is a generalisation of the Gaussian kernel. The parameter p controls the small-
est distance corresponding to the decreasing part of the kernel and can help
to leviate some of the issues that standard Gaussian kernels can encounter
in high dimensional spaces. For example, it can be shown that if data is uni-
formly distributed within the unit ball almost all will have norm equal to 1
in high dimensions (Verleysen and Francois, 2005). Consequently, in a high-
dimensional Gaussian distribution most data will be contained in the tails of
the distribution. This is in contrast to low dimensions where the Gaussian
distribution is local and most data is close to zero.

In general, a kernel is only required to be positive semi-definite and should
represent a plausible similarity measure between pairs of input examples (cf.
Sec. 2). These rather loose prerequisites of the Mercer theorem allow for task
specific kernel design.

Specialised string kernels have been developed and applied in biosequence
analysis and text categorisation (Cristianini and Shawe-Taylor, 2000). Some
recent developments in SVMs allow to learn task specific kernels or to use
many kernels in parallel (Lanckriet et al., 2004; Sonnenburg et al., 2006).

For the dimensionality reduction paradigm a variation of KPCA, called
Maximum Variance Unfolding (MVU), was proposed where the kernel matri-
ces are optimised by semi-definite programming to preserve the geometry of
the input data up to isometry (Weinberger et al., 2004). Experimental eval-
uation revealed that the positive semi-definite kernel matrices constructed
by MVU have clear advantages over Gaussian, polynomial, or linear kernels
(Weinberger et al., 2004). This shows that kernels which are successful for large
margin classification are not necessarily suitable for dimensionality reduction
and vice versa (Saul et al., 2006). The reason for this is that high-dimensional
spaces have a few, sometimes counter-intuitive, properties which can have
essential impact on kernel choice or design (Verleysen and Francois, 2005).

In addition to kernel selection, many kernel methods require that specific
parameters have to be selected or adapted. These include the parameter C
of C-SVMs for classification, the C and ε of SVMs for regression, the neigh-
bourhood parameter k of isomap, and specific kernel parameters such as the
width σ in Gaussian kernels.

Several of the kernel methods have their roots in statistical learning theory.
For example, learning with SVMs and neural networks is based on Valiant’s
principle of PAC learning (Valiant, 1984). According to (Vapnik, 2006a) the
bigger theoretical framework could be described as empirical inference science.
SVMs approximately implement Vapnik’s method of structural risk minimi-
sation which defines a “trade-off between the quality of the approximation of
the given data and the complexity of the approximating function” (Vapnik,
2000): The generalisation error is bounded by the sum of training error and a



16 S. Chalup and A. Mitschele

function of the Vapnik-Chervonenkis (VC) dimension, which is a measure of
the capacity, or flexibility of a function class. More specifically (Vapnik, 2000,
1998) proved that hyperplanes with ‖w‖ < l have a Vapnik-Chervonenkis
(VC) dimension which is bounded by min(int[R2l2], n) + 1 where R is the
radius of the smallest ball containing all feature vectors.

SVM parameters can be selected to minimise this bound in order to achieve
good generalisation ability of the model. In practice, however, these basic
bounds, although predictive (Burges, 1998), are typically very conservative
and refinements or alternative methods, such as cross-validation and its vari-
ants such as n-fold cross-validation (Mitchell, 1997; Stone, 1974), are often
preferred. For binary classifiers an alternative method to evaluate the perfor-
mance is the receiver operating curve (ROC) analysis (Fawcett, 2004).

7 Survey of Applications in Finance

The aim of this survey is to provide a structured overview of successful or
promising kernel machine applications in the area of finance. While the survey
does not claim completeness, it tries to highlight some of the main results.

Most of the hitherto performed analyses have their focus on risk man-
agement. In further areas, such as financial instrument pricing (e.g. option
pricing) or asset allocation, there have hardly been applications yet. The sur-
vey has been divided into applications within the market risk context, which
primarily concern time series forecasting, and within credit risk, which mainly
involve rating/scoring schemes and bankruptcy prediction. Not least through
the new capital regulations Basel II (Basel Committee on Banking Super-
vision 2006), that have been imposed on banks since the beginning of 2007
with a one year transition period, risk management has taken an even more
prominent role in finance.

7.1 Credit Risk Management

The area of credit risk management has rapidly gained importance in recent
years, particularly boosted through the new Basel II framework (Basel Com-
mittee on Banking Supervision 2006). The first Capital Accord, called Basel
I, which has been published in 1988, already required banks to build buffers
for possible losses through defaults of their clients. While these former regula-
tions were rather undifferentiated, the new guidelines demand a considerably
higher distinction. In this challenging context advanced statistical methods
are frequently used by bank practitioners for the analysis of the newly built
credit databases. Different machine learning approaches, including neural net-
works and kernel machines, have only recently been introduced to the area
(Thomas et al., 2005).

Credit risk management represents a promising application area for ker-
nel methods. SVMs have been successfully employed to derive bond ratings,
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help banks to classify their loan base into “good” and “bad” clients, and to
detect risks of business failure. Even though banks have put great efforts into
extending their available credit data, actual databases are not very large yet.
This is due to relatively rare nature of some events, for example defaults.

In a detailed research overview concerning bond rating estimation (Huang
et al., 2004) showed that artificial intelligence (AI) methods, including rule-
based expert systems, case-based reasoning and machine learning, proved to
deliver very good results in comparison to conventional statistical methods
like multiple linear regression or multiple discriminant analysis. The test set
prediction accuracy of earlier AI investigations had ranged from around 50%
to 88% for the classification problem. In their empirical study they compared
back-propagation neural networks to SVMs for bond rating analysis using
financial ratios and ratings from Taiwan (1998-2002) and the United States
(1991-2000). In general they found that AI methods performed better than
classical approaches with SVMs slightly ahead concerning the results.

(Chen and Shih, 2006) used a number of new input variables, including
stock market information, financial support by the government and financial
support by major shareholders, for their multi-class rating system, and also
compared different SVM approaches with a back-propagation neural network.
Using Taiwanese bank rating data with their SVM models they were able to
further improve results with an accuracy rate of 89% to 100% in the training
set and 73% to 85% in the test set, substantially outrivalling the benchmark
NN approach.

Another study on bond rating estimation was performed by (Cao et al.,
2006) using multi-class classification with “one-against-all”, “one-against-one”
and directed acyclic graph SVM (DAGSVM) approaches. All the SVM ap-
proaches, especially the latter one, significantly outperformed the commonly
used traditional benchmarks (back-propagation neural networks, logistic re-
gression and ordered probit regression) concerning classification accuracy.
Through an additional sensitivity analysis of feature importance (Cao et al.,
2006) were able to further enhance the SVM generalisation ability.

While rating analysis is mainly relevant for larger companies who can
afford to undergo the cost-intensive rating process, credit scoring plays a
corresponding role within credit assessment for smaller companies and re-
tail banking customers. (Baesens et al., 2003) provide an extensive study on
state-of-the-art classification algorithms and their performance within credit
scoring. Apart from common algorithms (for example logistic regression, dis-
criminant analysis, k-nearest neighbour, neural networks and decision trees)
they also considered kernel-based methods, namely SVMs and least-squares
SVMs (LS-SVMs). They used eight real-life credit scoring data sets which
they obtained from two banks and from publicly available sources. According
to their chosen performance measures (percentage correctly classified cases,
area under the receiver operating characteristic curve) LS-SVMs and neural
network classifiers achieved the best results. However, in their study linear
classifiers also yielded good outcomes, indicating that the analysed data sets
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exhibited only weak non-linear behavior. In turn, the authors noted that even
small improvements in scoring accuracy can lead to significant savings regard-
ing the huge volume of banks’ credit business.

(Schebesch and Stecking, 2005a) successfully employed SVMs to divide a
set of labelled credit applicants into subsets of typical and critical patterns.
While class labels for typical patterns were relatively easy to predict even
using standard linear classification methods they stated that the more in-
teresting critical patterns include less trivial training examples. Additionally
they suggested using the SVM results as input for linear discriminant analy-
sis in a hybrid approach that would improve generalisation ability. In another
contribution (Stecking and Schebesch, 2006) outlined how appropriate ker-
nels for the problem class could be chosen and compared. Their experiments
with the relatively unknown Coulomb kernel (1 + ‖xi − xj‖2/E)−δ (Hochre-
iter et al., 2003), which represents a localised kernel function similar to RBF
kernels, indicated better classification performance based on a lower expected
out-of-sample error than linear, polynomial, sigmoid, and RBF kernels.

As in credit scoring it is usually not possible to distinguish between abso-
lutely “good” and “bad” debtors. (Wang et al., 2005) proposed fuzzy SVMs to
evaluate credit risk. In their approach each customer was considered to belong
both to the positive and to the negative class via a membership concept. In-
stances that were identified as outliers were assigned with low membership for
the one class while the opposite class was assigned a higher membership. As
each instance contributed two errors to the total error term they called their
new hybrid approach bilateral-weighted fuzzy SVM. In their empirical study
they analysed three different data sets: 60 UK corporations (30 failed and
30 non-failed with 12 characteristic variables each), 653 Japanese credit card
application approval data (357 granted and 296 refused with 15 attributes
each) and 1225 applicants (323 bad and 902 good with 12 variables each).
Overall they found that their newly suggested fuzzy SVM almost consistently
outperformed numerous comparable methods (linear/logit regression, neural
network, standard and fuzzy SVM with varying kernels). Additionally it pro-
vided better generalisation ability than former fuzzy SVM approaches as the
negative impact of outliers could be successfully reduced. They noted, how-
ever, that computational complexity increased considerably in their approach
and that membership generation had to be thoroughly contemplated to avoid
distortions.

Among other applications of SVMs in the area of credit scoring were (van
Gestel et al., 2003a), (Sánchez et al., 2004), (Li et al., 2004a), again (Schebesch
and Stecking, 2005b; Stecking and Schebesch, 2005) and (Lai et al., 2006b).
Besides the assessment of creditworthiness, that is rating and scoring respec-
tively, different authors have used SVM approaches to predict bankruptcy of
companies. It has to be noted that this is also a very important task within
the new Basel II guidelines (Basel Committee on Banking Supervision 2006).

(Härdle et al., 2005) used a SVM based approach to predict bankruptcy
for 42 US companies that had filed for Chapter 11 of the US Bankruptcy Code
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in 2001-2002. Based on information from the annual reports they computed a
number of financial ratios concerning profit measures, for instance EBIT / TA
(Earnings before income tax / total assets), leverage ratios, liquidity ratios and
turnover ratios, for a total of 84 companies, that was 42 companies that went
bankrupt and 42 other companies with similar characteristics that survived.
Discriminant analysis suggested that the most significant predictors belonged
to profit and leverage ratios. Through their analysis they found that SVMs
were able to classify successful companies into one certain cluster, meaning
that they had to have certain characteristics in common, while the failing
companies were located outside this cluster. They also showed that SVMs
provided superior classification information concerning defaulted companies
compared to the common discriminant analysis approach. As their data set
was relatively small the linear classifier delivered the best classification results.
They noted, however, that for larger data sets non-linear classifiers would
probably be better suited.

In their study (Shin et al., 2005) showed that SVMs outperformed back-
propagation neural networks in the problem of corporate bankruptcy pre-
diction. Particularly they claimed that SVMs could handle smaller sample
sizes—that often occur within the credit risk context—more adequately. While
they did not thoroughly analyse the optimality of the kernel parameters (Min
and Lee, 2005) performed a detailed analysis in their contribution. First of
all they compared SVM performance to the common benchmarks: multiple
discriminant analysis, logistic regression and three-layer fully connected back-
propagation neural networks. Their data sample covered a—in terms of credit
risk—quite extensive data set of 1888 firms, with both 50% bankrupt and
non-bankrupt firms. Inter alia they performed a principal component analy-
sis and further steps to discern important features and ran an extensive grid
search to determine optimal parameters for the SVM kernel. They found that
SVMs outperform all benchmark methods and consistently achieved similar
or better performance than the neural network approach. (Min and Lee, 2005)
also proposed that SVMs tend to handle smaller sample sizes quite well while
generally keeping their generalisation ability through the use of the structural
risk minimisation principle.

In another hybridised approach Min et al. (2006) integrated genetic algo-
rithms (GAs) with SVMs to predict bankruptcy for a data set of 614 Korean
companies, half of which filed for bankruptcy between 1999 and 2002. The
GA was used to optimise the feature subset and the SVM parameters. For
the feature subset selection they used the so-called wrapper approach that
trained the classifier with a certain subset and subsequently evaluated the
corresponding classification error using a validation set. For the SVM’s RBF
kernel two parameters, C and σ2, had to be optimised. As both the feature
subset selection and the parameter optimisation were mutually dependent,
they were optimised simultaneously. (Min et al., 2006) observed that the hy-
bridised model significantly outperformed the common benchmarks logistic
regression and artificial neural networks, and was additionally able to im-
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prove prediction quality in comparison with the pure SVM approach. More
studies on bankruptcy prediction with SVMs showing superior performance
were conducted by (Fan and Palaniswami, 2000), (Shin et al., 2004), (van
Gestel et al., 2003b), (Yun et al., 2004), (Lai et al., 2006a) and (Hui and Sun,
2006).

7.2 Market Risk Management

In recent years kernel methods have also been widely used within market risk
management due to the well-known properties of financial time series which
usually are inherently noisy, non-stationary and deterministically chaotic (Cao
and Tay, 2001). The noisiness characteristic, which can lead to over- or under-
fitting when using estimation methods, implies that there is no complete infor-
mation available from the past behavior of financial markets. Non-stationarity
means that financial time series switch their dynamics between different re-
gions. This behavior causes an ever changing dependency between input and
output variables (Tay and Cao, 2001b). Thus, financial forecasting represents
a promising area for the application of kernel methods.

(Cao and Tay, 2001) compared SVMs to a multi-layer perceptron with
back-propagation in forecasting the S&P 500 Daily Index. They reported bet-
ter forecasting abilities for the SVM approach and emphasised the low number
of parameters (after the kernel had been specified) that had to be calibrated
for the SVM. Remarkably, the choice of parameters had a minor influence
on the results of their study when using SVMs while the neural network ap-
proach was much more affected by parameters. Also SVMs showed superior
speed characteristics compared to back-propagation.

To further improve their results (Tay and Cao, 2001b) and (Cao, 2003)
built a two-stage neural network architecture where they combined SVMs with
a self organizing map (SOM) in a hybrid model. According to the ‘divide-and-
conquer’ principle they first clustered the input data in disjoint regions, using
SOMs. Secondly, they employed multiple SVMs (also called SVM experts) to
fit each region separately with individual and most appropriate kernel func-
tions and corresponding parameters. With this two-stage procedure they were
able to significantly improve prediction performance for six different financial
data sets compared to the above-mentioned single SVM benchmark model.
Additionally, their model delivered more efficient learning through the data
set splitting and it provided a sparser solution representation as less support
vectors were used. Another hybrid variation of their standard model (Cao and
Tay, 2001) was provided in (Tay and Cao, 2001a) where they used saliency
analysis (SA) and genetic algorithms (GAs) to perform feature selection for
the SVMs. Both methods improved convergence, generalisation performance,
and training time, however, SA was slightly ahead of the GA version due to
lower computational cost. With yet another contribution (Tay and Cao, 2002)
enhanced SVMs to model non-stationarity of financial time series. Specifically
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they included the assumption that more recent data may provide more rel-
evant information than older data. The model was tested using real futures
contracts and delivered again superior performance to standard SVMs.

In a comprehensive study (Hansen et al., 2006) compared SVMs to a selec-
tion of modern time-series prediction methods, namely exponential smooth-
ing, autoregressive integrated moving average (ARIMA) and partially adap-
tive estimated ARIMA. Nine time-series from the Federal Reserve Economic
Database (FRED) with widely differing characteristics were used to evalu-
ate the model performances. Impressively, SVMs achieved the best predictive
results for eight out of the nine investigated data sets.

The direction of daily stock price index changes was predicted by (Kim,
2003) in another study of financial time series forecasting using SVMs. Ac-
cording to his empirical investigation, SVMs outperformed back-propagation
neural networks (BPN) and case-based reasoning (CBR). (Huang et al., 2005)
also successfully predicted market movement direction for the NIKKEI 225
index with SVMs in comparison to a variety of benchmark methods. Remark-
ably a newly proposed hybrid approach consisting of a combination of all
considered methods delivered even better classification results.

(Pérez-Cruz et al., 2003) employed SVMs to estimate the parameters of a
GARCH model for the prediction of the conditional volatility of stock mar-
ket returns. They found that—given normally distributed data—standard
GARCH estimators (for instance maximum likelihood) return better results
than SVMs, as they implicitly assumed the Gaussian distribution. However, in
estimating non-normally distributed probability distribution functions (pdfs)
SVMs outperformed standard methods substantially, being capable to ap-
proach any given distribution. It has to be noted that they only used linear
SVMs, leaving improvement through the usage of kernels and non-linear SVMs
open for further research.

Another detailed study on volatility forecasting and the specific problems
of time series data was performed by (Gavrishchaka and Ganguli, 2003). The
authors found that SVMs could successfully handle both long memory and
multiscale effects of inhomogeneous markets without imposing the restric-
tive model assumptions of other methods. They emphasised the capability of
SVMs to process real-time multiscale and high-frequency market data and
their ability to tolerate data incompleteness. (Gavrishchaka and Banerjee,
2006) extended this analysis from foreign exchange data to stock market data
(S&P 500 index).

Using kernel methods (Ince and Trafalis, 2006) selected stocks for short-
term portfolio management. In their study they examined SVMs and minimax
probability machines (MPM), both of which provided similarly good results,
depending on a sensible choice of free parameters. By assuming that the effi-
cient market hypothesis does not hold around companies’ earnings announce-
ments (Ince and Trafalis, 2006) were able to earn excess returns through
trading individual stocks after their earnings announcements. (Trafalis et al.,
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2003) also employed SVM Regression for option pricing and obtained mini-
mum mean square error compared to RBF and MLP networks.

Further applications in financial forecasting were presented by (Trafalis
and Ince, 2000; Ince and Trafalis, 2004), (van Gestel et al., 2001), (Yang
et al., 2002a), (Zhang et al., 2006) and (Kamruzzaman et al., 2003). Another
interesting hybrid approach that again combined self organizing maps with
SVMs for exchange rate prediction was presented by (Ni and Yin, 2006).

7.3 Synopsis and Possible Future Application Fields

As set forth in the preceding sections, kernel based algorithms have success-
fully been introduced in many different financial application areas. In table 1
we present a structured overview of these applications showing their individ-
ual publication dates. It can be concluded from the table that support vector
regression plays a very dominant role within market risk management while
in credit risk management mostly kernel based classification methods are em-
ployed. There are also a smaller number of kernel PCA applications and some
hybrid approaches throughout most of the considered areas. Interestingly, we
found within the sample of publications of this review that the publication
frequency reached another peak in 2006 after an early peak in 2003. These
numbers underpin the timeliness of the proposed methods and the domain
specific advantages that kernel methods may deliver within finance.

Possible Future Application Fields

Besides the presented overview of machine learning concepts and the review of
ongoing research efforts in the subject matter it is an aim of this contribution
to identify promising trends for future application of kernel methods. Due to
their strengths in statistical data analysis, SVMs in particular can possibly
improve performance in numerous further financial application fields.

While SVM algorithms have been extensively applied in specific credit
risk domains, like rating/scoring and bankruptcy prediction, their usage in
the analysis of other credit risk relevant parameters like Loss Given Default
(LGD)6 for instance has received very little attention until today. The ad-
equate estimation of such parameters is very important for banks’ internal
credit risk models and also for the fulfilment of supervisory regulations. Even
though it usually involves very heterogenous data sets with possibly non-linear
relations, banks commonly still trust in linear methods, like linear regression,
to derive their parameter estimates in practice.

Referring to the presented advanced dimensionality reduction methods in
section 3 there are also promising new application fields. (Thomason, 1998)
6 LGD is a highly relevant parameter from the Basel II context (Basel Committee

on Banking Supervision 2006) and represents the percentage of an engagement
that a financial institution looses if a specific obligor defaults. It has the following
relation to the alternatively quoted recovery rate (RR): LGD = 1−RR
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reviewed PCA as a traditional dimensionality reduction method in the con-
text of financial forecasting models. He stated that standard PCA using the
normal distribution assumption may be not particularly suited for financial
data. While he proposed a self-developed advanced PCA approach, a num-
ber of authors have already employed other recently developed dimensionality
reduction algorithms such as KPCA.

(Cao et al., 2003a,b) compared the performance of PCA, KPCA and in-
dependent component analysis (ICA) for feature extraction of different time
series data sets (including real futures contracts). They found that KPCA had
the best characteristics. Within short term portfolio management (Ince and
Trafalis, 2004) used KPCA and factor analysis, respectively, to identify the
most influential inputs for a SVM based stock price forecasting model.

Furthermore, within market risk management there are different new areas
where dimensionality reduction can also be applied, for instance term struc-
ture modeling. In these models a high number of possible input factors has
to be reduced to eventually make the modeling possible (Alexander, 2001).
However, to the knowledge of the authors, no kernel method applications have
been reported in this area yet.

Apart from such modeling issues, market risk management often involves
the approximation of high quantiles for a certain distribution. This is espe-
cially relevant in the context of portfolio risk management where value at
risk (VaR) measures the risk of a loss within a specific time interval given a
certain confidence level (quantile). In a novel application (Christmann, 2005)
and subsequently (Takeuchi et al., 2006) used SVMs to estimate these high
quantiles.

8 Overview of Software Tools

There are a large number of kernel machine implementations freely available
through the internet7 with SVM algorithms clearly dominating.

LIBSVM 8 (Chang and Lin, 2001) has probably become the most popu-
lar SVM software package offering a variety of algorithms, including support
vector classification (C-SVC, ν-SVC, multi-class classification), regression
(epsilon-SVR, ν-SVR) and distribution estimation (one-class SVM). Apart
from the source code in C++ and Java the software comes with numerous in-
terfaces to different other software packages. It has been integrated as package
e1071 into the R project which is a popular open source statistics software9.
Another R package including parts of LIBSVM is kernlab which extends the
algorithm spectrum by KPCA, spectral clustering and more.
7 Links to a selection of software are available at the following web sites:

www.support-vector-machines.org/SVM soft.html
www.kernel-machines.org/software.html

8 www.csie.ntu.edu.tw/∼cjlin/libsvm/
9 www.r-project.org
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SVMlight10 (Joachims, 1999) implements SVMs for pattern recognition,
regression and learning of a ranking function in C code. One of the main
strengths of this implementation is the fact that through scalable memory
requirements it can handle problems with many thousands of support vectors
and several hundred thousands of training vectors very efficiently. Additionally
the package klaR for the R project and a Java version called mySVM 11 have
been implemented. Users can define their own kernel functions in SVMlight
and find some example problems on the author’s web site.

LS-SVMlab12 (Suykens et al., 2002) is a least-squares SVM toolbox for
Matlab which is also available in C. This well-documented software package
offers standard classification and regression using LS-SVM algorithms. Addi-
tionally KPCA, ultra large scale problems and a number of other advanced
methods are supported.

WEKA13 (Witten and Frank, 2005) is a sophisticated environment with
graphical user interface for machine learning and data mining which is imple-
mented in Java. It includes a large library of classification algorithms including
SVMs and neural networks as well as evaluation tools such as ROC curves
(Fawcett, 2004).

The Spider14 is a Matlab based toolbox with interfaces to several Matlab
and C/C++ libraries for kernel-based algorithms. It includes a large variety
of tools for preprocessing, training and evaluation. Several kernel methods
are implemented including SVMs for classification and regression, one-class
SVMs, and KPCA. A WEKA interface has also been integrated.

SHOGUN 15 (Sonnenburg et al., 2006) is a new machine learning toolbox
which focuses on SVMs and implements a variety of kernels including several
string kernels which are important in computational biology. It offers the
option to employ combined kernels which can be constructed by weighted
linear combinations of sub-kernels. SHOGUN connects to LIBSVM (Chang
and Lin, 2001) and SVMlight (Joachims, 1999). It is implemented in C++
and has interfaces to Matlab, Octave, Python and R.

In addition to the already mentioned implementations of KPCA in kern-
lab and LS-SVMlab, software toolboxes for dimensionality reduction methods
are often available from the associated authors’ webpages or general resource
pages on manifold learning.16

10 svmlight.joachims.org/
11 www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.html
12 www.esat.kuleuven.ac.be/sista/lssvmlab/
13 www.cs.waikato.ac.nz/∼ml/weka/
14 www.kyb.tuebingen.mpg.de/bs/people/spider/main.html
15 www2.fml.tuebingen.mpg.de/raetsch/projects/shogun
16 www.cse.msu.edu/∼lawhiu/manifold/
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9 Conclusion

The overview of kernel methods showed that the field has quickly advanced
in recent years and provides an umbrella for some of the most successful
algorithms for classification, regression, and dimensionality reduction. Non-
linear methods such as KPCA, Isomap, and non-linear SVMs for regression
and classification can be obtained through kernelisation of linear techniques.

The development on the machine learning side is rapid and new concepts
and improvements, which have not been yet applied in finance, are continually
emerging. Recent advances in the machine learning community to establish
task specific kernel design offer new opportunities and challenges for financial
applications.

Among the financial applications addressed in the review section notably
the best results have been obtained in the area of credit risk whenever the un-
derlying data exhibited non-linear characteristics, as for instance in (Baesens
et al., 2003; van Gestel et al., 2003a, 2006).

Although SVMs and KPCA have been successfully applied in several stud-
ies on financial data the field of “Kernel Methods in Finance” is still in the
early stages of development. The availability of kernel methods to accurately
handle nonlinear dependencies has potential to further enhance current re-
sults. With respect to the high amounts that are dealt with on the financial
markets even very small performance or accuracy improvements can result in
considerable savings.
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